Linear Codes over the Finite Ring <i>Z</i><sub>15</sub>

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Skew Cyclic Codes over a Finite Ring

In this paper, we classify the skew cyclic codes over Fp + vF_p + v^2F_p, where p is a prime number and v^3 = v. Each skew cyclic code is a F_p+vF_p+v^2F_p-submodule of the (F_p+vF_p+v^2F_p)[x;alpha], where v^3 = v and alpha(v) = -v. Also, we give an explicit forms for the generator of these codes. Moreover, an algorithm of encoding and decoding for these codes is presented.

متن کامل

Linear Codes over Finite Rings

Linear codes over finite rings with identity have recently raised a great interest for their new role in algebraic coding theory and for their successful application in combined coding and modulation. Thus, in this paper we address the problems of constructing of new cyclic, BCH, alternant, Goppa and Srivastava codes over local finite commutative rings with identity. These constructions are ver...

متن کامل

Minimal Linear Codes over Finite Fields

As a special class of linear codes, minimal linear codes have important applications in secret sharing and secure two-party computation. Constructing minimal linear codes with new and desirable parameters has been an interesting research topic in coding theory and cryptography. Ashikhmin and Barg showed that wmin/wmax > (q− 1)/q is a sufficient condition for a linear code over the finite field ...

متن کامل

Linear covering codes over nonbinary finite fields

For a prime power q and for integers R, η with R > 0, 0 ≤ η ≤ R − 1, let A R,q = (Cni)i denote an infinite sequence of q-ary linear [ni, ni − ri]qR codes Cni with covering radius R and such that the following two properties hold: (a) the codimension ri = Rti + η, where (ti)i is an increasing sequence of integers; (b) the length ni of Ci coincides with f (η) q (ri), where f (η) q is an increasin...

متن کامل

Linear Codes over Finite Chain Rings

The aim of this paper is to develop a theory of linear codes over finite chain rings from a geometric viewpoint. Generalizing a well-known result for linear codes over fields, we prove that there exists a one-to-one correspondence between so-called fat linear codes over chain rings and multisets of points in projective Hjelmslev geometries, in the sense that semilinearly isomorphic codes corres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Linear Algebra & Matrix Theory

سال: 2020

ISSN: 2165-333X,2165-3348

DOI: 10.4236/alamt.2020.101001